the FOM of 23.7 is in an acceptable range, the triclinic cell cannot be considered as definitive. Certainly the low-symmetry crystal system and the limited number of lines have made attempts at solving the crystal structure so difficult that we are now relying on neutron and pulsed-neutron diffraction data for a solution to this problem.¹⁵

There is a longstanding effort under way, which involves G. D. Stucky, J. Faber, and M. H. Mueller of Argonne National Laboratory, to index and elucidate the structure by neutron diffraction by using Visser programs and other programs of deuterium substitution of dilithiomethane.¹⁵ There is a second project under way at Brookhaven National Laboratory, involving G. D. Stucky, for a pulsed-neutron study of the structure of deuterium-substituted dilithiomethane.¹⁶

Acknowledgment. We are indebted to Dr. Gordon S. Smith of Lawrence Livermore Laboratory for processing our X-ray data. We thank Raymond D. Kendrick of the IBM San Jose Research Laboratory for building the probe and other electronics associated with the ${}^{6}Li^{-1}H^{-13}C$ CPMAS experiments. We are grateful for support of this work from the National Science Foundation and for partial support from the Robert A. Welch Foundation.

Registry No. CH₂(⁷Li)₂, 90159-16-3; CH₂(⁶Li)₂, 91949-54-1; CD₂(⁷Li)₂, 91949-55-2; CH₂Li₂, 21473-62-1; CH₃⁷Li, 19274-19-2; CH36Li, 19274-18-1; CD37Li, 19274-21-6; CH3Li, 917-54-4.

(16) Stucky, G. D.; Gurak, J. A.; Lagow, R. J., to be submitted for publication.

> Contribution from the Department of Chemistry, Clemson University, Clemson, South Carolina 29631

Synthesis, Properties, and Reactions of Bis((trifluoromethyl)sulfonyl) Imide, $(CF_3SO_2)_2NH^1$

JERRY FOROPOULOS, JR.,² and DARRYL D. DESMARTEAU*

Received December 13, 1983

Bis((trifluoromethyl)sulfonyl) imide, (CF₃SO₂)₂NH, the parent compound of the bis((perfluoroalkyl)sulfonyl) imides, has been prepared in good yield. The strong electron-withdrawing effect of the $(CF_3SO_2)_2N$ group is borne out by the acidity of the imide and the properties of its derivatives. The synthesis and properties of (CF3SO2)2NH are described, as well as those of the derivatives $(CF_3SO_2)_2NX$, where X = Cs, Cl, NO, NO₂, and Si(CH₃)₃.

Introduction

The electronegativity of the CF₃SO₂ group and its application in organic chemistry have been well documented.3-5 As an electron-withdrawing group on nitrogen, for example, it substantially increases the acidity of an amine, imine, or imide. Compounds such as CF₃SO₂NH₂ and CF₃SO₂N(H)C₆H₅ exhibit pK_a values of weak acids, and in the case of CF_3S - O_2NH_2 , the lone CF_3SO_2 group affords the dichloro and disilver derivatives reasonable stability.6,7

The presence of two sulfonyl groups on nitrogen drastically increases the acidity of the remaining proton, as shown by $(FSO_2)_2NH$,⁸ $(RSO_2)_2NH^5$ (R = aryl), and certain $(R_1SO_2)_2NH^9$ derivatives. However, the simplest member of the (R₁SO₂)₂NH series, (CF₃SO₂)₂NH, had not been isolated. Our immediate interest was to compare the properties and reactivity of this imide to those of related $(FSO_2)_2NH$. The

- Senning, A. Chem. Rev. 1965, 65, 385. Howells, R. D.; Mc Cown, J. D. Chem. Rev. 1977, 77, 69
- (5) Hendrickson, J. B.; Sternback, D. D.; Bair, K. W. Acc. Chem. Res. 1977, 10, 306.

latter has led to a variety of interesting compounds,¹⁰ including one possessing the first example of a xenon-nitrogen bond.¹¹

Experimental Section

The majority of the synthetic work was carried out by using Pyrex and stainless-steel vacuum systems equipped with glass-Teflon and stainless-steel valves. Pressures were measured by using a Wallace and Tiernan differential pressure gauge, Series 1500. Where applicable, amounts of volatile reagents were determined by PVT measurements, assuming ideal-gas behavior. All other reagents were measured by direct weighing. Melting points were taken on a standard capillary-tube apparatus or by a modified Stock technique.

¹⁹F NMR spectra were normally recorded on a Varian XL-100-15 spectrometer using $\sim 80 \text{ mol } \% \text{ CFCl}_3$ as a solvent and internal standard. Chemical shifts are positive when found at a lower field than that of CFCl₃. ¹H NMR spectra were recorded on a Varian T-60 spectrometer using (CH₃)₄Si as an external standard.

Routine IR spectra were recorded on either a Perkin-Elmer Model 337 or 1330 spectrometer. Spectra for assignment were taken on a Perkin-Elmer Model 180 spectrometer. Gas spectra were taken with use of a 10-cm gas cell fitted with AgCl or KCl windows. Solids were taken as Nujol or Fluorolube mulls on AgCl windows.

Raman spectra were recorded on a Spex Model 14018 double monochromator employing photon-counting detection. Excitation was via the 514.5-nm line of an argon ion laser. Samples were usually run at low temperature in a glass cell similar to that of Brown et al.,¹²

0020-1669/84/1323-3720\$01.50/0 © 1984 American Chemical Society

⁽¹⁵⁾ Neutron diffraction data are currently being utilized to derive the crystal structure to dilithiomethane-d2: Stucky, G. D.; Faber, J.; Mueller, M. H.; Knott, H.; Steinfink, H.; Gurak, J. A.; Lagow, R. J., to be submitted for publication.

⁽¹⁾ Work carried out in part at Kansas State University.

Present address: Argonne National Laboratory, Argonne, IL 60439.

<sup>1977, 10, 306.
(6)</sup> Nazaretyan, V. P.; Radchenko, O. A.; Yagupolskii, L. M. J. Org. Chem. USSR (Engl. Transl.) 1974, 10, 2476.
(7) Ekkehard, B.; Haas, A. J. Fluorine Chem. 1974, 4, 99.
(8) Ruff, J. K. Inorg. Chem. 1965, 4, 1446.
(9) Meussdorffer, J. N.; Niederprum, H. Chem. Ztg. 1972, 96, 582.

⁽¹⁰⁾ Ruff, J. K. Inorg. Chem. 1966, 5, 732.
(11) DesMarteau, D. D.; LeBlond, R. D.; Hossain, S. F.; Nothe, D. J. Am. Chem. Soc. 1981, 103, 7734.

which was modified to allow direct inlet of solid samples under an inert atmosphere. Liquid nitrogen was usually the coolant, maintaining the sample near -180 °C.

EI and CI (CH₄) mass spectra were taken on a Finnigan Model 4021-C mass spectrometer at 70 eV using direct gas or solid inlet methods.

Reagents. Trifluoromethanesulfonyl fluoride, CF_3SO_2F , was prepared by electrochemical fluorination of CH_3SO_2F via the literature method.¹³ Methanesulfonyl chloride was purchased from Aldrich Chemical Co. and was used as received. Hexamethyldisilazane (HMDS), $[(CH_3)_3Si]_2NH$, was purchased from PCR, Inc., and distilled once before use. Chlorine monofluoride was prepared by heating 90 mmol each of Cl_2 and F_2 in a 150-mL Monel bomb for 16 h at 260 °C. The vessel was then pumped under vacuum at -196 °C. Essentially pure CIF was obtained by cooling the cylinder to -111 °C and allowing the CIF to vaporize at this temperature. All other reagents were readily available from commercial sources and were appropriately purified as needed.

Preparation of (CF₃SO₂)₂NH. CH₃SO₂Cl (286 g) was added in a slow stream to solid KF (170 g) contained in a 500-mL round-bottom flask, fitted with a reflux condenser. Initially the reaction was mildly exothermic. After all the CH₃SO₂Cl was added, the mixture was stirred for 1 h at 22 °C. The CH₃SO₂F was then distilled from the flask as the fraction boiling at 123-124 °C. It was further purified by a second distillation from P₄O₁₀, giving 208 g of pure CH₃SO₂F. Electrochemical fluorination of CH₃SO₂F in anhydrous HF afforded ~180 g of CF₃SO₂F after 45 h of continuous operation at 4-5 V and a current of 7-9 A.

The following preparation of $(CF_3SO_2)_2NH$ is similar to that used for the preparation for other $(R_4SO_2)_2NH$,⁹ with some modifications. In a routine preparation, CF_3SO_2F (110 g) was bubbled into 600 mL of liquid NH₃ at -78 °C, contained in a 1000-mL three-neck flask fitted with a mechanical stirrer. Reaction was immediate, forming NH₄NHSO₂CF₃ and NH₄F. The cold bath was removed, and the excess NH₃ was allowed to boil away inside the exhaust hood. Dioxane (600 mL) was added to make a slurry, and dry HCl was bubbled through this mixture until the pH was 2-3. The solution was then filtered, and the dioxane filtrate was rotary evaporated down to a volume of 75 mL. Addition of 200 mL of C₆H₆ resulted in crystallization of the H₂NSO₂CF₃, which was separated by filtration. The filtrate was further reduced by evaporation, and a second batch of crystals was obtained. The combined solids were resublimed twice, yielding 92 g of pure H₂NSO₂CF₃.

A portion of the $H_2NSO_2CF_3$ (83 g) was then dissolved in 50 mL of dry methanol. A CH₃OH solution of CH₃ONa formed from 12.8 g of Na and 150 mL of CH₃OH was then added to the $H_2NSO_2CF_3$ solution, and the methanol was removed by rotary evaporation. The resulting solid was washed with benzene, yielding 99 g of NaNHSO₂CF₃.

The NaNHŠO₂CF₃ (95 g) was transferred to a 1000-mL, threenecked flask, fitted with a mechanical stirrer, a condenser, and a drying tube. After addition of 600 mL of $[(CH_3)_3Si]_2NH$, the mixture was refluxed at 145 °C for 12 h. During this time, 100 mL of dioxane was added to the flask to prevent polymerization of the HMDS. Ammonia was evolved, and the formation of $(CH_3)_3SiN(Na)SO_2CF_3$ was monitored by IR spectroscopy according to the disappearance of the N-H band of NaNHSO₂CF₃ and the growth of the C-H band from $(CH_3)_3SiN(Na)SO_2CF_3$. When the IR showed no NaNHS-O₂CF₃ remaining, the $[(CH_3)_3Si]_2NH/dioxane solvent was vacuum$ distilled and the remaining salt was dried under vacuum in the sameflask. Due to the moisture senstivity of the compound, the yield wasnot determined.

Next, $(CH_3)_3SiN(Na)SO_2CF_3$ (112 g) was placed in a 500-mL stainless-steel bomb containing several steel balls and fitted with a 1000-psi pressure gauge. Dioxane (150 mL) was poured into the reactor, which was evacuated and cooled to -196 °C. CF_3SO_2F (0.51 mol) was then added by vacuum transfer, and the contents were heated to 110 °C in an oven for 3 h. Periodically, the cylinder was removed and shaken. When the pressure rose no further, the bomb was allowed to cool and the (CH₃)₃SiF and CF₃SO₂F were vented in the hood. The NaN(SO₂CF₃)₂ was then washed out of the cylinder with dioxane, and the salt was air-dried after being filtered from a dioxane/C₆H₆

solution. Further drying on the vacuum line gave $NaN(SO_2CF_3)_2$ (100 g) as a white granular solid.

In two separate vacuum distillations, \sim 35- and 65-g portions of the $NaN(SO_2CF_3)_2$ isolated above were treated with 100 mL of concentrated H₂SO₄ in a 500-mL round-bottom flask. The flask was heated to no more than 90 °C at 2-µmHg pressure. The (CF₃S-O₂)₂NH was collected at -22 °C, along with some CF₃SO₂OH, a common contaminant. The crude (CF₃SO₂)₂NH was resublimed twice at 60 °C and recrystallized from CFCl₃ at -50 °C to give (CF₃S- O_2 ₂NH (95 g) in a 47% overall yield based on the starting amount of CF₃SO₂F. The product was stored in a sealed container inside the drybox. $(CF_3SO_2)_2NH$: white, crystalline solid that fumes in moist air; mp 49-50 °C; IR (gas in equilibrium with solid at 25 °C) 3395 (m), 3220 (br), 1463 (m), 1440 (m), 1300 (w), 1240 (s), 1224 (s), 1138 (s), 860 (m), 643 (vw), 614 (m), 570 (vw), 505 (w) cm⁻¹; Raman (solid, -180 °C) 3205 (w), 1464 (vw), 1458 (w), 1450 (w), 1343 (w), 1263 (s), 1142 (m), 839 (w), 778 (s), 646 (w), 591 (w), 566 (w), 537 (w), 510 (w), 392 (m), 386 (m), 346 (s), 311 (s), 276 (s), 212 (w), 195 (w), 128 (m) cm⁻¹; ¹H NMR 10.42 (acetone), 7.92 ppm (CFCl₃); ¹⁹F NMR -75.97 (s) ppm; major m/z [EI] 281 (M⁺), 211 (CF₃SO₂NSO₂⁺) 147 (CF₃SO₂N⁺) 133 (CF₃SO₂⁺), 69 (CF₃⁺); major m/z [CI] 282 (MH⁺), 150 (CF₃SO₃H⁺ or CF₃SO₂NH₃⁺), 115 $(CF_2SO_2H^+ \text{ or } CF_2SONH_2^+)$. Anal. Calcd for $C_2HF_6NO_4S_2$: C 8.54; H, 0.36; F, 40.54; N, 4.98; S, 22.8. Found: C, 8.37; H, 0.55; F, 40.02; N, 5.07; S, 22.95.

Preparation of CsN(SO₂CF₃)₂. In a typical reaction using a 20-mL FEP reactor, (CF₃SO₂)₂NH (7.00 g) was added to an equimolar amount of CsF (3.78 g) in the drybox. The reactor was cooled to -196 °C, and CH₃CN was added by vacuum transfer, to a volume of 6 mL. When the mixture was warmed to 0 °C, a rapid reaction ensued, forming a clear solution. CH₃CN and HF (identified by the formation of SiF₄ in the presence of glass) were pumped away at 22 °C, leaving a wet solid. This solid was dissolved in 10 mL of absolute ethanol followed by 200 mL of dry CFCl₃, resulting in the immediate formation of white crystals. The salt was filtered, air-dried, and then vacuum-dried at 80 °C for 1 h to yield 8.39 g (81.6%) of CsN-(SO₂CF₃)₂: mp 115 °C; IR (KBr Pellet) 1345 (s), 1328 (m), 1196 (s), 1130 (s), 1053 (m), 792 (w), 762 (vw), 739 (m), 650 (w), 597 (m), 574 (m), 512 (w), 410 (vw) cm⁻¹; Raman (solid, 22 °C) 1331 (m), 1244 (m), 1222 (w, sh), 1150 (m), 798 (vw), 747 (s), 664 (w), 576 (vw), 560 (w), 415 (w), 353 (m), 335 (s), 309 (m), 291 (s), 222 (w), 177 (w), 138 (m), 119 (vw) cm⁻¹; ¹⁹F NMR (CH₃CN) -79.3 (s) ppm. Attempts to obtain a mass spectrum by direct solid inlet were unsuccessful.

Preparation of (CF_3SO_2)_2NCI. Into a 30-mL FEP reactor at -196 °C containing (CF₃SO₂)₂NH (23.6 mmol) was added ClF (37 mmol) by vacuum transfer. The reactor was placed in a CFCl₃ bath at -111 °C and left to warm to 0 °C over 12 h. At that point, there were two distinct layers: a lower yellow-green layer of impure (CF₃SO₂)NCl and an upper clear layer of HF. Purification was achieved by first pumping away any volatile materials at -111 °C and then transferring the entire contents onto a large excess of NaF at -196 °C. The mixture was shaken at 22 °C, and the container was then pumped under vacuum through a -78 °C bath, where essentially pure (CF₃SO₂)₂NCl (6.82 g, 92%) collected. Caution! On several occasions, reactions on a larger scale (40 mmol) resulted in explosions of considerable force. Due care must be exercised in carrying out this reaction on any scale. (CF₃SO₂)₂NCl: clear, viscous liquid with an acrid odor; mp (glass formed at -196 °C) -96 to -93 °C; vp (22 °C) 8 torr; IR (6 torr) 1461 (s), 1445 (m), 1330 (w), 1234 (vs), 1200 (w), 1124 (s), 1112 (sh), 1015 (w), 915 (w), 840 (s), 766 (w), 644 (w), 593 (s), 567 (w), 499 (m) cm⁻¹; Raman (liquid, -50 °C) 1464 (5, dp), 1440 (6, dp), 1296 (1, p), 1252 (47, p), 1226 sh (4, dp), 1125 (15, p), 920 (3, dp), 776 (100, p), 651 (27, p), 578 (19, p), 567 (5, dp), 560 (5, dp), 536 (13, p), 500 (1, dp), 431 (37, p), 382 (18, dp), 350 (80, p), 326 (31, p), 299 (26, dp), 269 (93, p), 222 (13, dp), 207 sh (2, dp?), 184 (5, p?), 117 (30, p), 86 (18, dp?) cm⁻¹; ¹⁹F NMR -71.9 (s) ppm; major m/z [CI] 316 (MH⁺), 281 (MH – Cl⁺), 133 (CF₃SO₂⁺), 69 (CF₃⁺).

Preparation of (CF₃SO₂)₂NNO₂. (CF₃SO₂)₂NCl (1.65 g, 5.2 mmol) and a 5:1 molar excess of N_2O_4 were successively condensed into a 20-mL FEP reactor at -196 °C. The mixture was allowed to warm directly to 22 °C and let stand for 4 h. There were no condensable gases at -111 °C, indicating that no N_2 , O_2 , or Cl₂ was given off. Only ClNO₂ and excess N_2O_4 were removed at 22 °C, leaving a white crystalline solid (CF₃SO₂)₂NNO₂ (1.67 g, 98%): dec pt 107 °C; IR (solid on KCl) 1754 (m), 1737 (m), 1355 (w), 1297 (s), 1179 (s),

⁽¹²⁾ Brown, L. W.; Hopkins, A. G.; Daly, F. P. Appl. Spectrosc. 1974, 28, 194.

⁽¹³⁾ Gramstad, T.; Haszeldine, R. W. J. Chem. Soc. 1956, 173.

Scheme I

$$CH_{3}SO_{2}CI \xrightarrow{KF} CH_{3}SO_{2}F \xrightarrow{ECF} CF_{3}SO_{2}F$$

$$(ECF - electrochemical fluorination)$$

$$CF_{3}SO_{2}F + 3NH_{3} \xrightarrow{NH_{3}} NH_{4}NHSO_{2}CF_{3} \xrightarrow{HCI} CF_{3}SO_{2}NH_{2}$$

 $CF_{3}SO_{2}NHNa \xrightarrow{[(CH_{3})_{3}SI]_{2}NH} CF_{3}SO_{2}N(Na)Si(CH_{3})_{3} \xrightarrow{CF_{3}SO_{2}F}$

(CF3SO2)2NNa H2SO4 (CF3SO2)2NH (48%)

1109 (s), 1039 (s), 788 (m), 762 (w), 734 (m), 638 (m), 590 (m), 578 (m), 504 (w) cm⁻¹; Raman (solid, -180 °C) 1408 (vs), 1322 (w), 1315 (w), 1252 (s), 1136 (s), 1123 (m), 804 (w), 771 (w) 748 (vs), 633 (w), 593 (w), 564 (w), 554 (w), 537 (w), 417 (m), 403 (m), 348 (m), 324 (s), 301 (m), 288 (s), 185 (w), 163 (w), 132 (s) cm⁻¹; 19 F NMR (CFCl₃) -77.43 (s) ppm.

Preparation of (CF₃SO₂)₂NNO. Nitric oxide (8.8 mmol) was condensed onto (CF₃SO₂)₂NCl (1.38 g, 4.37 mmole in a 20-mL FEP reactor at -196 °C. Reaction was started at -155 °C, at which point the NO was blue-black on top of the frozen $(CF_3SO_2)_2NCl$. As the reaction warmed, the color became less intense. After 14 h at -20 °C, the reaction was essentially complete, and only a white solid remained. NOCl and excess NO were pumped away at -10 °C, giving (CF₃SO₂)₂NNO (1.35 g, 100%): mp 118 °C; IR (Nujol) 2287 (w), 1318 (vs), 1189 (vs), 1115 (vs), 1048 (s), 793 (m), 767 (w), 739 (m), 639 (s), 584 (s), 572 (s), 511 (s) cm⁻¹; Raman (solid, 22 °C) 2295 (vs), 1358 (vw), 1310 (w), 1238 (w), 1210 (vw), 1149 (w), 1131 (w), 1060 (vw), 805 (vw), 742 (s), 653 (vw), 610 (vw), 552 (vw), 433 (vw), 410 (w), 351 (w), 331 (m), 310 (w), 295 (w), 280 (w), 228 (m, br), 128 (vw) cm⁻¹; ¹⁹F NMR (CFCl₃) -79.2 (s) ppm.

Preparation of (CF₃SO₂)₂NSi(CH₃)₃. In an FEP reactor, (CF₃- SO_2)₂NH (0.85 g) was allowed to react with a 3:1 molar excess of (CH₃)₃SiH. When the mixture was allowed to warm from -196 °C, an initial rapid reaction occurred near 22 °C. After 4 h and occasional agitation, the homogeneous mixture was cooled slowly to -196 °C. A quantitative amount of hydrogen was recovered, and the excess silane was pumped away at 10 °C, giving (CF₃SO₂)₂NSi(CH₃)₃ (0.98 g, 92%) as a low-volatile colorless liquid: 19 F NMR (CFCl₃) -77.47 (s) ppm; ¹H NMR 0.57 (s) ppm; major m/e [CI] 163 ([(CH₃)₃Si]₂OH⁺), 147 (CF₃SO₂N⁺), 77 (?), 73 (Si(CH₃)₃⁺) with weak ions at 282 ((CF₃SO₂)₂NH₂⁺) and 354 (M⁺).

Photolysis of ClN(SO_2CF_3)₂. ClN(SO_2CF_3)₂ (1.20 g, 3.78 mmol) was added by vacuum transfer to a 12-mm o.d. Pyrex tube. The portion of the tube containing the liquid sample was irradiated at 22 °C for 0.75 h with a medium-pressure, 250-W Hg lamp. The volatile products were separated via -78 and -196 °C traps. The -196 °C trap contained pure CF₃Cl (3.80 mmol) identified by IR spectroscopy. A white solid residue remained in the reactor; the empirical formula was, by difference, $CF_3S_2O_4N$. This material could be readily sublimed and was found to be nearly identical with the previously reported (CF₃SO₂NSO₂)₂:¹⁴ mp 54-55 °C; IR (gas in equilibrium with solid, 25 °C) 1458 (s), 1430 (w), 1240 (s), 1208 (m), 1133 (m), 907 (s), 865 (w), 661 (m), 601 (w), 519 (w), 475 (w) cm⁻¹; Raman (solid, 22 °C) 1468 (w), 1458 (w), 1442 (w), 1279 (vs), 1218 (s), 1133 (w), 1058 (vw), 1042 (vw), 783 (s), 667 (vs), 606 (m), 575 (w), 562 (vw), 396 (m), 348 (m), 333 (vs), 291 (vs), 272 (m), 216 (m), 146 (w), 130 (m) cm⁻¹; ¹⁹F NMR (CFCl₃/CH₂Cl₂) -74.2 (s) ppm. The CI mass spectrum of the vapor in equilibrium with the solid at 22 °C was complex, but peaks above 200 amu at m/z 423 (MH⁺), 359 (MH⁺ - SO₂) and 212 $((M/2)H^+)$ support the presence of the dimer of CF₃SO₂NSO₂ and perhaps the monomer.

Results and Discussion

Synthesis and Properties of $(CF_3SO_2)_2NH$ The synthesis of (CF₃SO₂)₂NH was accomplished in moderate overall yield as shown in Scheme I. The method was based in part on that used by Meussdorffer and Niederprum to prepare other $R_fSO_2N(H)SO_2R_f'$ derivatives, where $R_f = CF_3$, C_4F_9 , and C_8F_{17} and $R_f' = C_4F_9$ and C_8F_{17} .⁹ Surprisingly, these authors did not report (CF₃SO₂)₂NH. The moderate yield is due to Foropoulos and DesMarteau

Scheme II

NoOCH3

CsN(SO₂CF₃)₂ + HF
22 °c C
(CF₃SO₂)₂NH
$$\frac{CIF}{-111 10 0 °C}$$
 (CF₃SO₂)₂NCI + HF
22 °c Hsi(CH₃)₃
(CF₃SO₂)₂NSi(CH₃)₃ + H₂

the last two reactions in Scheme I, since CF₃SO₂N(Na)Si- $(CH_3)_3$ is formed in over 80% yield based on starting CF₃S-O₂F.

Crystalline (CF₃SO₂)₂NH fumes in air and dissolves exothermically in H_2O . Aqueous solutions of the compound appear to be stable, and the compound exhibits a typical strong-acid titration curve when titrated with aqueous NaOH. The pK_a of the imide in water was 1.7, which compares closely with that of 1.3 for (FSO₂)₂NH.⁸ As an additional comparison, the p K_a of a commercial sample of (PhSO₂)₂NH in water was determined to be 1.4. These values probably indicate that all bis(sulfonyl)amines are relative strong acids in H₂O.

In an effort to gain a more meaningful comparison of the acid strengths of (CF₃SO₂)₂NH vs. (FSO₂)₂NH, the ¹H NMR method of Rode, Engelbrecht, and Schantl was applied.¹⁵ This method consists of measuring $\delta(OH)$ of a solution of an acid in glacial acetic acid and comparing it to $\delta(OH)$ of the pure solvent. A linear correlation between pK values for the overall dissocation of strong acids in glacial acetic acid and the specific chemical shifts of acid protons in these dilute solutions was demonstrated for a series of strong acids. The pK values for $(CF_3SO_2)_2NH$ and $(FSO_2)_2NH$ were determined in this way to be 7.8 and 8.7, respectively, as compared to pK values for CF₃CO₂H (11.4), HNO₃ (10.1), HOTeF₅ (8.8), H₂SO₄ (7.0), HOSO₂F (6.1), HI (5.8), HOIOF₄ (5.0), HClO₄ (4.9), and CF_3SO_3H (4.2) determined in the same way. If the values determined for (CF₃SO₂)₂NH and (FSO₂)₂NH are valid, these compounds are remarkably strong acids.

The characterization of $(CF_3SO_2)_2NH$ by vibrational and NMR spectroscopy is straightforward. The ¹⁹F NMR exhibits a singlet in the region characteristic of covalent CF₃SO₂ derivatives. Values for a variety of CF₃SO₂O and CF₃SO₂N compounds fall in the range of -71 to -80 ppm (CFCl₃) and tend toward higher field as the charge on the CF₃SO₂ group increases, i.e. CF₃SO₂OCF₃¹⁶ (-76.2), CF₃SO₂OCl¹⁷ (-73.5), CF₃SO₂OH¹⁶ (-78.5), (CF₃SO₂)₂NCF₃¹⁸ (-72.7), (CF₃S- $O_2)_2 NCl (-71.9)$, and $(CF_3 SO_2)_2 NH (-76.0)$.

The Raman spectrum of (CF₃SO₂)₂NH is, as expected, rather similar to those of other CF_3SO_2X derivatives (X = F, OH, and OCl) in the 750–1500 cm⁻¹ region.¹⁷ A comparison of the spectra of the pseudoisoelectronic pair $(CF_3SO_2)_2O(1)$ and $(CF_3SO_2)_2NH(s)$ shows a very strong overall similarity in the Raman (50-1500 cm⁻¹), as do the low-pressure gasphase IR spectra (400-1500 cm⁻¹).¹⁸

Derivatives of $(CF_3SO_2)_2NH$. The strong acidity of $(CF_3-$ SO₂)₂NH allows the preparation of many derivatives to be carried out in a straightforward manner. Scheme II shows three derivatives that were synthesized because of their potential utility as reagents for further synthetic reactions.

The cesium salt is rather covalent judging from its low melting point of 115 °C. However, the Raman spectrum of the solid clearly supports the presence of the $(CF_3SO_2)_2N^-$

(18) Foropoulos, J., Jr., Ph.D. Dissertation, Kansas State University, 1982.

Rode, B. M.; Engelbrecht, A.; Schantl, J. Z. Phys. Chem. (Leipzig) (15) 1973, 253, 17.

Noftle, R. E.; Cady, G. H. Inorg. Chem. 1965, 4, 1010. Katsuhara, Y.; Hammaker, R. M.; DesMarteau, D. D. Inorg. Chem.

⁽¹⁷⁾ 1980, 19, 607.

⁽¹⁴⁾ Roesky, H. W.; Amarki, M.; Schönfelder, L. Z. Naturforsch. B: Anorg. Chem., Org. Chem. 1978, 33B, 1072.

Scheme III

$$NO^+N(SO_2CF_3)_2^- + CINO$$

$$-20 \cdot c | NO CIN(SO_2CF_3)_2 \frac{N_2O_4}{22 \cdot c} NO_2^+ N(SO_2CF_3)_2^- + CINO_2 \int h^{\mu} CF_3CI + (CF_3SO_2NSO_2)_2$$

anion, as shown by an expected decrease in the antisymmetric $\nu(SO_2)$ to 1331 cm⁻¹ from 1460, 1440 cm⁻¹ in $(CF_3SO_2)_2NH$ and the similarity in other aspects to the spectrum of the isoelectronic $(CF_3SO_2)_2O.^{18}$ These observations agree well with those for the related compounds $CsN(SO_2F)_2$, HN(S- $O_2F)_2$, and $S_2O_5F_2.^{11,19}$

The trimethylsilyl derivative represents a potentially useful ligand-transfer reagent of considerable scope. As previously reported, the compound was used to prepare the novel compound Xe[N(SO₂CF₃)₂]₂ by reaction with XeF₂,²⁰ and the high reactivity of the compound with H₂O also suggests a variety of other reactions. However, an attempt to react this material with CF₃SO₂F to form (CF₃SO₂)₃N was unsuccessful. At temperatures of 180–200 °C, some (CH₃)₃SiF was produced, but extensive degradation of the starting materials was evident and no evidence was found for the desired tris((trifluoromethyl)sulfonyl)amine.

The N-chlorobis((trifluoromethyl)sulfonyl)amine, ClN(S- $O_2CF_3)_2$, was very useful for further synthetic reactions as shown in Scheme III.

The presence of the NO⁺ and NO₂^{γ} cations in ONN(S-O₂CF₃)₂ and O₂NN(SO₂CF₃)₂ are readily apparent from the vibrational spectra with ν_1 (NO⁺) at 2295 cm⁻¹ and ν_1 (NO₂⁺) at 1408 cm⁻¹. These values are essentially identical with those of the related fluorosulfates, ONOSO₂F and O₂NOSO₂F.²¹ The remainder of the spectra are fully in accord with an ionic formulation.

The photolysis of ClN(SO₂CF₃)₂ was initially carried out to prepare the hydrazine analogue [(CF₃SO₂)₂N]₂, a known reaction for the related (FSO₂)₂NCl.¹⁰ However, the observed reaction further demonstrates the instability of CF₃SO₂X· radicals. For example, CF₃SO₂OCl and (CF₃SO₂O)₂ both decompose in a manner consistent with loss of CF₃ from an intermediate CF₃SO₂· radical:^{16,17,22}

$$CF_3SO_2OC1 \rightarrow CF_3SO_3 + CI \rightarrow CF_3C1 + SO_3$$
$$(CF_3SO_2O)_2 \rightarrow 2CF_3SO_3 \rightarrow CF_3SO_2OCF_3 + SO_3$$

__ _ _

Thus the photolysis of $ClN(SO_2CF_3)$ and the previously observed decomposition of $Xe[N(SO_2CF_3)_2]_2^{20}$ are exactly analogous:

$$ClN(SO_2CF_3)_2 \rightarrow Cl + \cdot N(SO_2CF_3)_2 \rightarrow CF_3Cl + \frac{1}{2}(CF_3SO_2NSO_2)_2$$
$$Xe[N(SO_2CF_3)_2]_2 \rightarrow \cdot XeN(SO_2CF_3)_2 + \cdot N(SO_2CF_3)_2 \rightarrow Xe + CF_3N(SO_2CF_3)_2 + \frac{1}{2}(CF_3SO_2NSO_2)$$

Furthermore, this mode of decomposition for R_1SO_2X radicals appears to be general, as shown by related reactions involving $C_4F_9SO_2$ derivatives:^{18,23}

$$C_4F_9SO_2OCl \rightarrow C_4F_9SO_3 + Cl \rightarrow C_4F_9Cl + SO_3$$
$$(C_4F_9SO_2)_2NH + ClF \rightarrow (C_4F_9SO_2)_2NCl'' + HF \rightarrow (C_4F_9SO_2)_2N + Cl \rightarrow 1/2(C_4F_9SO_2NSO_2)_2 + C_4F_9Cl$$

Summary

The synthesis of the novel $(CF_3SO_2)_2NH$ has been successfully carried out from a series of reactions involving CF_3SO_2F , prepared by electrochemical fluorination of CH_3 -SO₂F. The imide is probably the most acidic NH compound known, and the unique properties of the very electronegative $(CF_3SO_2)_2N$ group have been demonstrated by the formation of selected derivatives. Finally, the general instability of CF_3SO_2X radicals toward the loss of CF_3 has been substantiated.

Acknowledgment. The support of this research by the National Science Foundation is greatly appreciated. The 3M Co. is acknowledged for the gift of CF_3SO_2F in the early stages of this research. D.D.D. thanks the Alexander von Humboldt Stiftung for a fellowship during part of this research.

Registry No. $(CF_3SO_2)_2NH$, 82113-65-3; $CsN(SO_2CF_3)_2$, 91742-16-4; $(CF_3SO_2)_2NCl$, 91742-17-5; $(CF_3SO_2)_2NNO_2$, 91742-18-6; $(CF_3SO_2)_2NNO$, 91742-19-7; $(CF_3SO_2)_2NSi(CH_3)_3$, 82113-66-4; $CFCl_3$, 75-69-4; $(CF_3SO_2NSO_2)_2$, 68751-12-2; CH_3SO_2F , 558-25-8; CF_3SO_2F , 335-05-7; $H_2NSO_2CF_3$, 421-85-2; NaNHS-O₂CF₃, 35534-15-7; $(CH_3)_3SiN(Na)SO_2CF_3$, 91742-20-0; NaN(S-O₂CF₃)₂, 91742-21-1; CH_3SO_2Cl , 124-63-0; KF, 7789-23-3; NH₃, 7664-41-7; $[(CH_3)_3Si]_2NH$, 999-97-3; CsF, 13400-13-0; CIF, 7790-89-8; N_2O_4 , 10544-72-6; NO, 10102-43-9; $(CH_3)_3SiH$, 993-07-7.

⁽¹⁹⁾ Sawyer, J. F.; Schrobilgen, G. J.; Sutherland, S. J. Inorg. Chem. 1982, 21, 4064.

 ⁽²⁰⁾ Foropoulos, J., Jr.; DesMarteau, D. D. J. Am. Chem. Soc. 1982, 104, 4260.
 (21) Output A. M. Control II. A. Anklas, E. Cong. J. Chem. 1071, 40-35.

⁽²¹⁾ Qureshi, A. M.; Carter, H. A.; Aubke, F. Can. J. Chem. 1971, 49, 35.

⁽²²⁾ A reviewer pointed out that an internal S_N it ype mechanism might be equally attractive. Since small amounts of C_2F_6 are observed in certain decompositions of CF_3SO_2O - derivatives, we prefer the radical path. However, it is certainly true that the proposed radical path has not been proven.

⁽²³⁾ Johri, K.; DesMarteau, D. D. J. Org. Chem. 1981, 46, 5081.